导数英语怎么说
本文为您带来导数的英文翻译,包括导数用英语怎么说,导数用英语怎么说,导数的英语造句,导数的英文原声例
本文为您带来导数的英文翻译,包括导数用英语怎么说,导数用英语怎么说,导数的英语造句,导数的英文原声例句,导数的相关英语短语等内容。
导数的英文翻译,导数的英语怎么说?
n.derivative
misc.differential coefficient
导数的英语网络释义
... definite integral 定积分 derivative 导数 determinant 行列式 ...
... differential equation 微分方程 differential coefficient 导数 differential transformer 差接变压器,差动变压...
导数的汉英大词典
导数的英语短语
方向导数[数]directional derivative;directional;Richtungsableitung
李导数[数]Lie derivative
时间导数time derivative
共变导数[数]covariant derivative
对数导数[数]logarithmic derivative
泛函导数Functional derivative
一阶导数First derivative;first order derivative;FDDSC;LOGR-FD
高阶导数higher order derivative;derivatives of higher order;High Order Derivatives
偏导数[数]partial derivative
导数的英文例句
我们再求一次导数,也就是对导数求导。
Let's sneak in one more derivative here, which is to take the derivative of the derivative.
那么,那个方向的导数是什么呢?
And then, what's the derivative in that direction?
它只有关于每个变量的偏导数。
It has only partial derivatives for each variable.
它其实是那个方向的方向导数。
Well, it's actually the directional derivative in that direction.
它就是位置,对时间的一阶导数。
That's the first derivative of the position versus time.
角加速度等于,角速度的导数。
And angular acceleration is the derivative of angular velocity.
基本上是的,那就是方向导数。
And that's basically, yes, that's the directional derivative.
那么二阶导数判定是怎样的呢?
So, what does the second derivative test say?
我是说现在已经有两个一阶偏导数。
I mean we already have two first derivatives.
有些不是规则的函数,却有导数。
You have functions that are not regular enough to actually have a derivative.
我们要求这个,方程的时间导数。
And so we're going to take the derivative versus time of this equation.
它是收入Pq相对于数量的导数。
It is the derivative of revenue pq with respect to quantity.
但都是使用导数的逼近公式。
But, it's the usual approximation formula using the derivative.
好的,那就是偏导数的定义。
OK, so that's the definition of a partial derivative.
垂直于梯度的方向上,方向导数为零。
The directional derivative in a direction that's perpendicular to the gradient is basically zero.
他们说二阶导数转为正值了。
The second derivative, they say, is turning positive.
你们可能认为,加速度只是速度的导数。
So, you might think acceleration is just the derivative of speed.
总而言之,我们所做的就是求二阶导数。
And all we did, further, is take that second derivative.
我们还要试图理解偏导数。
We are trying to understand partial derivatives.
因此,我们应该重新理解偏导数的含义。
So, we have to figure out what we mean by partial derivatives again.
速度向量,是位置向量关于时间的导数。
So, the velocity vector is the derivative of a position vector with respect to time.
当遇到偏导数时,一定记住,不能约分。
Somehow, when you have a partial derivative, you must resist the urge of simplifying things.
不是每个函数都有导数。
And, not every function has a derivative.
因此,一个多变量的函数没有通常的导数。
So, a function of several variables doesn't have the usual derivative.
那就是,每个小盒子里烟雾总量的导数和。
Well, that will be the sum of the derivatives of the amounts of smoke inside each little box.
把对压强的导数拿出来,看看有什么发生。
Let's take the derivative outside with pressure and see what happens.
我们还学过加速度,也就是速度向量的导数。
And, we've also learned about acceleration, which is the derivative of velocity.
我们来用方向导数,来描述一下相同的东西。
Let's say the same thing in terms of directional derivatives.
对于任意两分量,混合偏导数相等。
For every pair of components the mixed partials must be the same.
我会计算时间导数。
I take the time derivative.
导数的原声例句
And what's fallen out when we do that, because in each case, one of the first derivatives gives us the entropy.
当我们这样做时就得到了结果,因为在这些例子中,一阶导数是熵。
And all this is, is saying that when you take a mixed second derivative, it doesn't matter in which order you take the two derivatives.
麦克斯韦关系的本质是,当你考虑混合的二阶导数时,求导的顺序不影响最后的结果,现在,我们利用这些关系。
If you knew only the third derivative of the function, you can have something quadratic in t without changing the outcome.
如果方程里有三阶导数,你就可以引入一个二次项,但是结果却不会变
All right. If the derivative is small, it's not changing, maybe want to take a larger step, but let's not worry about that all right?
好,如果导数很小的话,函数就基本没什么变化,可能我们就想把步子迈大一点儿了,但是别为这个担心?
So here I've written for the hydrogen atom that deceptively simple form of the Schrodinger equation, where we don't actually write out the Hamiltonian operator, but you remember that's a series of second derivatives, so we have a differential equation that were actually dealing with.
这里我写出了,氢原子薛定谔方程的,最简单形式,这里我们实际上,没有写出哈密顿算符,但是请记住那你有,一系列的二次导数,所有我们实际上会处理一个微分方程。
So if we differentiate this object, I'm gonna find a first order condition in a second.
想要求它的导数,先让我想想一阶条件
And, coincidently, what is the partial of energy with respect to distance?
巧合的是,能量对距离的导数是什么?
So I'm hoping you guys are comfortable with the notion of taking one or two or any number of derivatives.
我希望你们,能习惯求一阶,二阶,或者任意阶导数的概念
It's constant pressure. OK, so now, last time you looked at the Joule expansion to teach you how to relate derivatives like du/dV.
这是恒压的,好,上节课你们,学习了焦耳定律,以及怎样进行导数间的变换。
So, all I want to do now is look at the derivatives of the free energies with respect to temperature and volume and pressure.
我现在所要做的一切就是,考察自由能对,温度,体积和压强的偏导数。
What's a function, what's a derivative, what's a second derivative, how to take derivatives of elementary functions, how to do elementary integrals.
什么是函数,什么是导数,什么是二阶导数,如何对初等函数求导,如何进行初等积分
I tell you something about the second derivative of a function and ask you what is the function.
我告诉你一个函数的二阶导数,然后问你这个函数是什么
That is, it's easy to write down straight away that dG with respect to temperature at constant pressure S is minus S.
这就是说,可以很简单的写出dG在,恒定压强下对温度的偏导数,是负。
One way to think about this intuitively if the derivative is very large the function is changing quickly, and therefore we want to take small steps.
关于这个方法很直观的一点想法是,如果导数非常大,函数也就变化的非常快,因此我们想一小步一小步的来。
It's three different second derivatives in terms of the three different parameters.
它是用三个不同常数表示的,三个不同的二阶导数。
But, of course, it's going to come from the fact that these second derivatives are also equal.
但是,结果同样是依赖于,二阶混合偏导数相等。
Then the second derivative gives the change in entropy with respect to the variable that we're differentiating, with respect to which is either pressure or volume.
二阶导数给出熵,随着变量变化的情况,这些变量包括压强或者体积。
Now, I want to do one concrete problem where you will see how to use these derivatives.
现在我要解决一个具体的问题,从中你会明白如何运用这些导数
The third derivative, unfortunately, was never given a name, and I don't know why.
遗憾的是三阶导数没有专门的名称,我也不知道这是为什么
Of course, you can take a function and take derivatives any number of times.
当然,你可以随意拿一个函数,对它求任意阶的导数
I take a look at the second derivative, which is the second order condition.
我需要求出二阶导数,即需要寻找二阶条件
At my maximum, I'll put a hat over it to indicate this is the argmax; at my maximum I'm going to set this thing equal to 0.
给每个最大值都标注上一个帽来,在最大值处导数方程等于0
So now we have this derivative, in terms of physical quantities, things that we can measure.
现在我们得到了这个导数,它可以用实验可测的与。
Let's sneak in one more derivative here, which is to take the derivative of the derivative.
我们再求一次导数,也就是对导数求导
And, of course, see that either way we do that we'll have an equality.
利用两种不同的顺序求二阶导数,就可以得到一个等式。
And all we did, further, is take that second derivative.
总而言之,我们所做的就是求二阶导数。
So the slope of the guess is the first derivative.
因此斜率等于此处的一阶导数。
Then you're supposed to know derivatives of simple functions like sines and cosines.
你应该知道一些简单函数的导数,比如正弦函数和余弦函数
To find a maximum I want the second derivative to be negative.
最大值处的二阶导数是负数
Now let's take it in the other order.
我们用另一种顺序求二阶偏导数。
导数的网络释义
导数 导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
以上关于导数的英语翻译来自英汉大词典,希望对您学习导数的英语有帮助。