量子英语怎么说
本文为您带来量子的英文翻译,包括量子用英语怎么说,量子用英语怎么说,量子的英语造句,量子的英文原声例
本文为您带来量子的英文翻译,包括量子用英语怎么说,量子用英语怎么说,量子的英语造句,量子的英文原声例句,量子的相关英语短语等内容。
量子的英文翻译,量子的英语怎么说?
n.quantum ; gion
量子的英语网络释义
我们都知道量子(quantum)是现代物理的重要概念,而关于量子的应用也有不少,比如谷歌的量子计算机、有望成为新一代通信技术的量子通信,未来量子科技还将...
按理说,爱因斯坦对于量子力学的建立也是做过很大贡献的,包括他的光电效应,量子(QUANTA)这个词某种意义上也是这么来的,表达的是:微观世界的相互作用是一份一份的,在能量上是固定分量的,就像光子,他也是因此得诺贝尔...
... gamma ray 伽玛射线 ; 伽马射线 ; 射线 ; 进步金属 gamma quantum 量子 ; 伽马量子 ; 光量子 ; 加马量子 gamma radiator 辐射体 ; 伽马辐射体 ...
博客 ... gamma ray laser 射线激光器 gamma ray quantum 量子 gamma ray transition 跃迁 ...
量子的汉英大词典
量子
- quantum; gion:
light quantum
光量子
- 短语:
- 量子变频器 quantum frequency converter;
- 量子产额 {物化} quantum yield;
- 量子产量 quantum yield;
- 量子场 quantum field;
- 量子场论 {量子} quantized field theory; quantum field theory;
- 量子等离子体 quantum plasma;
- 量子电磁力学 quantum electrodynamics;
- 量子电动力学 {物} quantum electrodynamics;
- 量子电动力学原理 principle of quantum electrodynamics;
- 量子电势 quantum potential;
- 量子电子动力学 quantum electron dynamics;
- 量子电子学 {电子} quantum electronics;
- 量子定律 quantum law;
- 量子发光曲线 quantum luminosity curve;
- 量子放大器 quantum amplifier;
- 量子辐射 quantum radiation;
- 量子干涉仪 quantum inteferometer;
- 量子固体 quantum solid;
- 量子光电倍增管 quantacon;
- 量子光学 quantum optics;
- 量子化学 {物化} quantum chemistry;
- 量子换能体 {细胞} quantasome;
- 量子几何动力学 quantum geometrodynamics;
- 量子计数器 {电} quantum counter;
- 量子计算机 quantum computer;
- 量子假设 {量子} quantum hypothesis;
- 量子检测效率 detective quantum efficiency;
- 量子阶梯 quantum ladder;
- 量子晶体 quantum crystal;
- 量子流体 quantum fluid;
- 量子流体动力学{低温} quantum hydrodynamics;
- 量子论 {物} Planck's theory; quantum theory;
- 量子能 quantum energy;
- 量子频率标准 quantum frequency standard;
- 量子气体 quantum gas;
- 量子色动力学 quantum chromodynamics;
- 量子生物化学 quantum biochemistry;
- 量子生物学 quantum biology;
- 量子声学 quantum acoustics;
- 量子释放 quantum release;
- 量子态 quantum state;
- 量子探测器 {物} quantum detector;
- 量子体 quantosome;
- 量子条件 quantum condition;
- 量子统计 {统} quantum statistics;
- 量子统计物理学 quantum statistical physics;
- 量子统计力学 quantum statistical mechanics;
- 量子统计学 {统力} quantum statistics;
- 量子味动力学 quantum flavordynamics;
- 量子物理学 quantum physics;
- 量子吸收产额 quantum absorption yield;
- 量子相位检测器 quantum phase detector;
- 量子效率 quantum efficiency;
- 量子效应 quantum effect;
- 量子液体 quantum liquid;
- 量子引力动力学 quantum gravitational dynamics;
- 量子有机化学 quantum organic chemistry;
- 量子跃迁 quantum transition;
- 量子噪声 quantum noise;
- 量子振荡器 quantum oscillator
量子的英语短语
量子点quantum dot;QDs;QLED;CQD
量子纠缠quantum entanglement;entanglement;quantum entangled;Measurement of the entanglement
量子化学[物化]quantum chemistry;Quantum chemicals;Quantenchemie;quantum chemistry calculation
量子场论[量子]quantum field theory;quantum theory of field;QFT;quantum field theories
量子色动力学QCD;lattice QCD
量子电动力学QED;QED Quantum Electrodynamics;Quantum Electrodynamics - QED
量子效率[电子]Quantum efficiency;quantum yield;IPCE;EQE
量子通信quantum communications;quantum communication;DSQC
量子调控quantum control
量子的英文例句
量子力学和混沌理论都指出世界处在不断变化中。
Both quantum mechanics and chaos theory suggest a world constantly in flux.
它确实发生在量子力学中。
It does happen in quantum mechanics.
在本例中,我们利用了量子力学的叠加原理。
In this example, we exploited the quantum mechanics principle of superposition.
我们真的得问问自己,为什么量子力学是有限的?
We really have to ask ourselves, why is quantum mechanics limited?
他就是以那样一种方式建立了量子力学的另一种形式。
He set up in that way an alternative form of quantum mechanics.
如果这个模型显然没有考虑到量子力学,我们为什么要用它呢?
Why are we using this model if it clearly doesn't take into account quantum mechanics?
泡利说在一个给定的系统内,没有两个电子有完全相同的量子数。
Pauli says no two electrons in a given system can have the entire set of quantum numbers identical.
纳米晶体,也被称为量子点,是一种直径只有百万分之一毫米的半导体粒子。
Nanocrystals, also known as quantum dots, are semiconducting particles with a diameter of a few millionths of a millimeter.
然而,量子力学的预测只给出事件发生的概率,而不是事件是否会发生的确定性陈述。
The predictions of quantum mechanics, however, give only the probability of an event, not a deterministic statement of whether or not the event will occur.
由于这种概率性,爱因斯坦一生都强烈不满这个理论,尽管他并不认为量子力学是错误的。
Because of this probabilism, Einstein remained strongly dissatisfied with the theory throughout his life, though he did not maintain that quantum mechanics is wrong.
它们包括了“量子纠缠”,即影响一组原子的事件会立即影响另一组原子,不管相距有多远。
They include "quantum entanglement", in which events affecting one group of atoms instantly affect another group, no matter how far apart they may be.
为了目睹这种效应,物理学家首先需要吸出每一个可能的量子,让光束处于能量最小的“基态”。
To see such effects, physicists first have to suck out every possible quantum and leave a beam in its least-energetic "ground state".
量子力学是一种非常成功的理论:它提供了精确计算各种实验结果的方法,特别适用于微小粒子方面。
Quantum mechanics is a highly successful theory: it supplies methods for accurately calculating the results of diverse experiments, especially with minute particles.
爱因斯坦的想法在他死后的实验中得到了验证,由于这些实验大多支持传统的量子力学,爱因斯坦的方法几乎必然是错误的。
Einstein's ideas have been tested by experiments performed since his death, and as most of these experiments support traditional quantum mechanics, Einstein's approach is almost certainly erroneous.
令专业水准的科学家十分困惑的是,围绕量子物理学、时空相对论、黑洞和大爆炸等不太可能的话题,准宗教崇拜正在形成。
Much to the bewilderment of professional scientists, quasi-religious cults are being formed around such unlikely topics as quantum physics, space-time relativity, black holes and the big bang.
出现在肉眼面前的光亮,事实上是频率不同的光线的叠加。所以,这是量子化的。
What appears to the naked eye to be glowing is actually a superposition of different lines of distinct frequency. So, this is quantized.
研究人员首先在单晶体TiO2平面上制作一层或两层的单分子硒化铅量子点。
The researchers began by making samples of one or two monolayers of PbSe quantum dots deposited on flat single-crystalline TiO2.
量子特征可用正则量子化方式得到。
The quartal features can be obtained by the canonical procedure of quantization.
这些半经典量子化方法仅适用于可积体系。
Butsemi-classical quantized methods are applicable in integrabel system.
现在,回忆一下波尔量子理论。
Now, you recall in Bohr the quantum condition.
但它在量子力学中就发生了。
But it does happen in quantum mechanics.
还有什么比量子力学更神奇?
What could be weirder than quantum mechanics?
但是量子世界并不遵守这些。
But the quantum world doesn't obey.
作为人类也同时成为量子。
To be human is to be quantum.
本例中,我们利用了量子力学的叠加原理。
In this example we exploited the quantum mechanics principle of superposition.
能量被量子化,速度被量子化。
Energy is quantized. Velocity is quantized.
所有一切都被量子化,能量被量子化。
Everything is quantized. Energy is quantized.
这是个量子过程。
The process is quantum mechanical.
在这里,量子比特与光量子的强耦合起着举足轻重的作用。
Here, the strong coupling of quantum bits with light quanta plays a pivotal role.
它们是量子化的。
They are quantized.
量子的原声例句
And Pauli says no two electrons in a given system can have the entire set of quantum numbers identical.
而泡利认为在一个给定的系统内,没有两个电子有完全相同的量子数。
No one, until this time, had suggested that a system would be subjected to quantization except for light.
在他之前,还没有人提出过,除光系统外的量子化系统。
So by parallel we mean - they're either both spin up remember that's our spin quantum number, that fourth quantum number.
所以我们意味着,它们都是自旋向上,记住我们的自旋量子数,是第四个量子数。
We use the adjective "Newtonian" but we don't speak of certain writers who are still interested in quantum mechanics as "Newtonian writers."
虽然我们用牛顿主义者这个词“,但是我们不会把那些,对量子力学有兴趣的人称作牛顿主义作家“
You see, the quantum condition, by putting quantization into the moangular mentum it is propagated through the entire system. Orbit dimensions are quantized.
你们看,量子条件,通过把,角动量量子化,它就能在这个系统中进行传播,同时轨道大小也被量子化。
He has two electrons here with the same set of quantum numbers. B but these are two separate hydrogen atoms.
因为我写了两个量子数,一样的电子,但这是在两个不同原子中啊。
And this spin magnetic quantum number we abbreviate as m sub s, so that's to differentiate from m sub l.
这个自旋磁量子数我们把它简写成m下标s,以和m小标l有所区分。
So you might ask well, why are we using this model if it clearly doesn't take into account quantum mechanics?
那么大家可能会问为什么我们要用这个,显然没有考虑量子力学的模型呢?
what three quantum numbers tell us, versus what the fourth quantum number can fill in for us in terms of information.
三个量子数和,四个量子数告诉我们的信息。
But it shows you that with a little bit of understanding of quantization you can go a long way.
但它看起来,有一些量子化的含义,你可以研究研究。
OK, great. So, most of you recognize that there are four different possibilities of there's four different electrons that can have those two quantum numbers.
K,大部分都认为,有4个不同的可能,有四个不同的电子可以有,这两个量子数。
What appears to the naked eye to be just glowing is actually superposition of different lines of distinct frequency. So, you see, this is quantized.
出现在肉眼面前的光亮,事实上是波段不同的光线的叠加,所以,它是量子化的。
You get a set of solutions that are dependent upon -These quantum states fall out of the solution to this equation.
你得到一系列的解,这些解依赖于量子状态,和方程解不相干的解。
The other thing that we took note as is what happens as l increases, and specifically as l increases for any given the principle quantum number.
另外一个我们要注意的是,l增加时如何变化,特别是对于某个给定的,主量子数l变化时如何变化。
So, what we can do instead of talking about the ionization energy, z because that's one of our known quantities, so that we can find z effective.
我们做的事可以代替讨论电离能,因为那是我们知道的量子数之一,那是我们可以解出有效的,如果我们重新排列这个方程。
And when you solved the relativistic form of the Schrodinger equation, what you end up with is that you can have two possible values for the magnetic spin quantum number.
当你们解相对论形式的,薛定谔方程,你们最后会得到两个,可能的自旋磁量子数的值。
So if we're talking about the fourth excited state, and we talk instead about principle quantum numbers, what principle quantum number corresponds to the fourth excited state of a hydrogen atom.
如果我们说的是,第四激发态,我们用,主量子数来描述,哪个主量子数对应了,氢原子的第四激发态?
Now, you recall in Bohr the quantum condition.
现在,回忆一下波尔量子理论。
All right. So let's look at some of these wave functions and make sure that we know how to name all of them in terms of orbitals and not just in terms of their numbers.
好,让我们来看一下,这些波函数,并确定我们都知道,怎么用轨道,而不仅是量子数来命名它们,一旦我们可以命名它们。
The way he described is when you try to get down a quantum dimensions and you are standing there with your camera, just remember the sun is at your back and your shadow is always in the picture.
这种方法被他描述为,当你试着处理一个量子尺寸时,并且你试着拿着你的相机在那,记住太阳在你的背后,而你的影子总是在照片上。
And even though he could figure out that this wasn't possible, he still used this as a starting point, and what he did know was that these energy levels that were within hydrogen atom were quantized.
这是不可能的了,但他还是以此为出发点,他知道,氢原子的这些能级,是量子化的,而且他也知道,我们上节课所看到现象。
But the reality that we know from our quantum mechanical model, is that we can't know exactly what the radius is, all we can say is what the probability is of the radius being at certain different points.
我们不可能准确的知道,半径是多少,我们只能说,它在不同半径处,的概率是多少,这是,量子力学。
So let's go to a second clicker question here and try one more. So why don't you tell me how many possible orbitals you can have in a single atom that have the following two quantum numbers?
让我们来看下一道题目,你们来告诉我,有多少个可能的轨道,含有这些量子数呢?
We didn't just need that n, not just the principle quantum number that we needed to discuss the energy, but we also need to talk about l and m, as we did in our clicker question up here.
我们不仅需要n,不仅要这个可以,决定能量的主量子数,还需要m和l,就像我们做这道题这样。
Yeah. So we have two orbitals, or four electrons that can have that set of quantum numbers.
嗯,有我们有两个轨道,也就是4个电子可以有这套量子数。
So, we need a new kind of mechanics, which is quantum mechanics, which will accurately explain the behavior of molecules on this small scale.
所以我们需要一种新的力学,也就是量子力学,来解释在这个,小尺度下分子的行为。
Charge is quantized. And, secondly,he was able to measure the value of the elemental charge.
电荷是量子化的,第二,他能,测量出电荷基本的量值。
So if we think about, for example, this red line here, which energy state or which principle quantum number do you think that our electron started in?
我们来看看,比如这里的这个红线,它是从主量子数,等于多少的能级发出的?
The reason there are three quantum numbers is we're describing an orbital in three dimensions, so it makes sense that we would need to describe in terms of three different quantum numbers.
我们需要,3个量子数的原因,是因为我们描述的是一个,三维的轨道,所以我们需要,3个不同的量子数,来描述它。
So, there's two kind of cartoons shown here that give you a little bit of an idea of what this quantum number tells us.
这里展示的两个图片,可以让你们对,这个量子数有些概念。
量子的网络释义
量子 量子(quantum)是现代物理的重要概念。即一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。 量子一词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”,它最早是由德国物理学家M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍,从而很好地解释了黑体辐射的实验现象。 后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。 自从普朗克提出量子这一概念以来,经爱因斯坦、玻尔、德布罗意、海森伯、薛定谔、狄拉克、玻恩等人的完善,在20世纪的前半期,初步建立了完整的量子力学理论。绝大多数物理学家将量子力学视为理解和描述自然的基本理论。
以上关于量子的英语翻译来自英汉大词典,希望对您学习量子的英语有帮助。